

NELSON GEOTECHNICAL Associates, Inc. GEOTECHNICAL ENGINEERS \& GEOLOGISTS

Engineering-Geology Branch

April 27, 2018

Ms. Sandra Lum
3728 East Mercer Way
Mercer Island, WA 98040

Geotechnical Engineering Evaluation
Lum Residence Retaining Walls and Slope Stabilization 3728 East Mercer Way
Mercer Island, Washington
NGA File No. 1027418

Dear Ms. Lum,
This report summarizes the results of our geotechnical engineering evaluation and stabilization recommendations of the steep slopes and existing block retaining walls located at your residence located at 3728 East Mercer Way on Mercer Island, Washington, as shown on the Vicinity Map in Figure 1. Our services were completed in general accordance with our services agreement signed by you on March 15, 2018.

INTRODUCTION

The purpose of this study is to explore and characterize the surface and subsurface conditions within the vicinity of the existing block retaining walls and steep slopes in order to provide our opinions and recommendations with respect to the stabilization of the slope and retaining wall system.

We visited the site on March 26, 2018 to observe the existing site conditions. We understand and observed that a series of tiered concrete block retaining walls were constructed within a steep northeastfacing slope area below and to the east of the existing residence. We were informed that these walls were constructed without a permit and the City of Mercer Island has requested a geotechnical evaluation be performed prior to approving wall construction or any proposed stabilization measures. You have requested that we explore the site within the vicinity of the lower steep east-facing slope and the block retaining walls and provide our opinion regarding the stability of the existing block walls, and to provide recommendations for potential repairs or improvements to the walls.

SCOPE

The purpose of this study is to explore and characterize the site subsurface conditions and provide recommendations for stabilizing affected areas. Specifically, our scope of services included the following:

1. A review of available soil and geologic maps of the area.
2. Exploring the subsurface soil and groundwater conditions within the eastern portion of the residence and in the vicinity of the retaining walls using a limited-access drill rig and hand auger explorations. Drill rig was subcontracted by NGA.
3. Mapping the conditions on the sloping areas below the residence and evaluate current slope stability conditions.
4. Providing our opinion regarding the construction and stability of the existing block retaining walls.
5. Providing recommendations for permanently stabilizing the affected areas, as needed.
6. Providing recommendations for potential retaining wall repairs or improvements.
7. Documenting the results of our findings, conclusions, and recommendations in a written geotechnical report.

SITE CONDITIONS

Surface Conditions

The site consists of a roughly rectangular-shaped parcel covering approximately 0.22 acres. The site is occupied by a multi-story, single-family residence adjacent to SE $36^{\text {th }}$ Street in the central portion of the property. Moderate to steep northeasterly-facing slopes exist throughout the property, occupying areas to the east of the residence that descend from the eastern side of the residence to adjacent properties along a lower private access road. The majority of the tiered block walls were constructed along the surface of this slope. In addition, two short block walls occupy the area to the northwest of the residence and to the south of SE $36^{\text {th }}$ Street, adjacent to the driveway area. The property is bordered to the west and south by existing single-family residences, to the north by SE $36^{\text {th }}$ Street, and to the west by an access road leading to similar low-density residential development below. The site layout within the vicinity of the residence is shown on the Schematic Site Plan in Figure 2.

A series of tiered block retaining walls are located below and to the east of the residence along a moderate steep east-facing slope that descends from a relatively level upper bench where an existing deck is located to the eastern property line below along an access driveway. The steep, easterly-facing slopes steps down at gradients in the range of 25 to 26 degrees (47 to 49 percent grade). Profiles of the existing ground surface through the block wall areas, and the interpreted subsurface conditions within the steep slopes are presented in Cross Sections A-A' and B-B' in Figure 3 and 4. We observed that portions of the block retaining walls in the eastern portion of the site have experienced distress since construction, as they appear to be bowing and/or sagging in some areas. The three-tiered system in the eastern portion of the
site contains walls which range from approximately 2.8 to 5.5 feet in exposed height. The middle tier is 9.0 feet away from the upper tier, and 11.7 feet from the lower tier. The base of the walls appears to be not embedded and no geogrid reinforcement was utilized in wall construction. In addition, several boulders were incorporated into the wall alignment, and are surrounded by concrete blocks. The overall height of the slope and tiered retaining walls below the residence is approximately 18 feet. The slope outside the retaining wall area in the east is bare and covered in plastic, but the wall area to the northwest is generally vegetated with underbrush and sparse mature trees. We did not observe indications of past sloughing events on the steep slopes outside of the retaining wall area. We also did not observe surface or seeping water in the immediate vicinity of the residence or on the slope during our site visit on March 26, 2018.

Subsurface Conditions

Geology: The geologic units for this area are shown on the Geologic Map of Mercer Island, Washington, by Kathy G. Troost and Aaron P. Wisher (GeoMapNW and the City of Mercer Island, 2006). The project site is mapped as surficial deposits of the Fraser Glaciation, consisting of Vashon Stade glacial till (Qvt). Glacial till is described as a non-sorted mixture of sand, silt, clay, and gravel. Our explorations generally encountered undocumented fill underlain by silty fine to medium grained sand with gravel, generally consistent with the description of the glacial till mapped in this area.

Explorations: The subsurface conditions within the site were explored on March 26, 2018 by drilling three borings with a limited-access drill rig extending between 4.0 and 11.5 feet below the existing ground surface within the east-facing steep slope. In addition, a 4.0 foot deep hand auger exploration was completed within the northwestern portion of the property. The approximate locations of our explorations are shown on the Schematic Site Plan in Figure 2. A geologist from Nelson Geotechnical Associates, Inc. (NGA) was present during the explorations, examined the soils and geologic conditions encountered, obtained samples of the different soil types, and maintained logs of the explorations.

For the borings, a Standard Penetration Test (SPT) was performed on each of the samples during drilling to document soil density at depth. The SPT consists of driving a 2 -inch outer-diameter, split-spoon sampler 18 inches using a 140-pound hammer with a drop of 30 inches. The number of blows required to drive the sampler the final 12 inches is referred to as the " \mathbf{N} " value and is presented on the boring logs. The \mathbf{N} value is used to evaluate the strength and density of the deposit.

The soils were visually classified in general accordance with the Unified Soil Classification System presented in Figure 5. The logs of our borings are attached to this report and are presented as Figures 6 through 8. We present a brief summary of the subsurface conditions in the following paragraph. For a detailed description of the subsurface conditions, the boring and hand auger logs should be reviewed.

In all of our explorations, we encountered approximately 1.0 to 6.0 feet of surficial brown, silty, fine to medium sand with gravel in a loose condition. We interpreted this material to be undocumented fill. Below the surficial fill, all explorations encountered gray to gray-brown, silty, fine to medium sand with varying amounts of iron oxidation staining and gravel in an increasingly dense condition to the depths explored, which was interpreted to be the native glacial till deposits. Borings 1,2 , and 3 were terminated within the native glacial soils at depths of $11.5,10.5$, and 4.0 feet below the existing ground surface, respectively. Hand Auger One was sterminated at a depth of 4.0 feet within the native glacial till.

Hydrologic Conditions

We did not encounter groundwater seepage in any of the explorations completed during our fieldwork. If groundwater were to be encountered within this site, we would consider this condition to be perched groundwater. Perched water occurs when surface water infiltrates through less dense, more permeable soils and accumulates on top of underlying, less permeable soils. Perched water does not represent a regional groundwater "table" within the upper soil horizons. Perched water tends to vary spatially and is dependent upon the amount of precipitation. We would expect the amount of perched water to decrease during drier times of the year and increase during wetter periods.

SENSITIVE AREA EVALUATION

Seismic Hazard

We reviewed the 2015 International Building Code (IBC). Since dense glacial soils are interpreted to underlie the site at depth, the site conditions best fit the IBC description for Soil Class C for native soils encountered at depth.

Hazards associated with seismic activity include liquefaction potential and amplification of ground motion. Liquefaction is caused by a rise in pore pressures in a loose, fine sand deposit beneath the groundwater table. It is our opinion that the competent native soils interpreted to underlie the site have a low potential for liquefaction or amplification of ground motion.

The medium dense or better soils interpreted to form the core of the site slope are considered stable with respect to deep-seated slope failures. However, the loose surficial materials and undocumented fill on the slope, if not removed or suitably stabilized, have the potential for failures during seismic events. Such events should not directly affect the existing residence provided the recommended repairs to the residence and slope stabilization measures are designed and implemented as described in this report.

Landslide Hazard/Slope Stability

The criteria used for evaluation of landslide hazards includes soil type, slope gradient, and groundwater conditions. Steep northeasterly-facing slopes with gradients between approximately 25 and 26 degrees (47 and 49 percent) with a height of approximately 18 feet, are located around the residence, mainly within the eastern portion of the site. We observed minor signs of distress within the retaining walls such as bowing. We did not observe significant indications of distress within the residence foundation.

Our explorations and observations indicate that the core of the steep slope below the fill consists primarily of competent glacial soils. It is our opinion that the core of the slope is stable and that the block wall repairs should terminate in stable soils. It is also our opinion that there is a significant potential for ongoing failures within the loose surficial and undocumented fill soils on the steep slope if these soils are not stabilized. Proper site grading and drainage as well as stabilization techniques as recommended in this report should help improve current stability conditions. We also recommend that the slope be continually monitored for any indications of instability and stabilization measures be implemented immediately if they are observed.

CONCLUSIONS AND RECOMMENDATIONS

General

It is our opinion from a geotechnical standpoint that the existing block walls on the steep slope below the residence were not adequately installed and/or engineered, and are failing due to a combination of several factors. These factors include: lack of adequate drainage measures behind the walls, lack of geogrid reinforcement, supporting the walls on unsuitable material, inadequate wall toe embedment, and placement of unsuitable fill behind the walls. We also did not observe drainage system components, such as drain pipes and drain rock layers behind the retaining walls. Our explorations encountered up to 6.0 feet of loose undocumented fill soils that are not suitable as structural fill immediately surrounding some of the walls, in addition to the large boulders upon which portions of the wall are built. Multi-tiered retaining wall systems or retaining walls constructed on sloping ground need to have an engineered design and need to utilize geogrid reinforcement to support the backfill material. We understand that an engineered design was not used in the construction of the walls.

To restore the stability of the steep slope area below the residence, we recommend removing all of the concrete block retaining walls and associated loose soils from the steep slope area and reconstructing the tiered retaining wall system with the provided design. The new geogrid-reinforced fill walls could be constructed using the existing retaining wall blocks or new Keystone Compaq blocks. Loose native and undocumented fill soils are interpreted to underlie the slope areas that are not suitable for support of the recommended retaining walls. We recommend that the base of the new wall blocks and reinforced fill
area be supported directly on competent native soils. The base of the new walls should be embedded a minimum of 18 -inches below the finished ground surface.

We recommend that the existing tiered walls be replaced with no more than two walls. We anticipate that each tier will have a maximum exposed height of approximately 8.0 feet but may be higher depending on actual site elevations. We anticipate that the total wall height may be up to ten feet in order to satisfy a recommended base embedment of 18 inches below finished ground surface. This is discussed further in the Wall Design and Construction Recommendations subsection of this report. Due to the tight site constraints and the substantial amount of fill material that will need to be removed from the wall and reinforced fill area prior to construction of the walls, we stress that implementing proper planning and construction staging techniques will be key to achieve a successful outcome. NGA should be retained to review project plans prior to construction and should be retained to observe wall construction to verify wall installation is being performed in accordance with the plans and our recommendations provided in this report.

All residence drains including roof, driveway, footing, and yard drains along with drains associated with the proposed wall construction should be thoroughly investigated and directed to flow into an approved system. All existing drain pipes within the steep slope area should be abandoned and removed as a part of the drainage improvements.

Temporary and Permanent Slopes

Temporary cut slope stability is a function of many factors, including the type and consistency of soils, depth of the cut, surcharge loads adjacent to the excavation, length of time a cut remains open, and the presence of surface water or groundwater. It is exceedingly difficult under these variable conditions to estimate a stable, temporary, cut slope angle. Therefore, it should be the responsibility of the contractor to maintain safe slope configurations since they are continuously at the job site, able to observe the soil and groundwater conditions encountered and able to monitor the nature and condition of the cut slopes.

The following information is provided solely for the benefit of the owner and other design consultants and should not be construed to imply that Nelson Geotechnical Associates, Inc. assumes responsibility for job site safety. Job site safety is the sole responsibility of the project contractor.

For planning purposes, we recommend that temporary cuts in the on-site soils be no steeper than 2 Horizontal to 1 Vertical (2H:1V). If significant groundwater seepage or surface water flow were encountered, we would expect that flatter inclinations would be necessary. We recommend that cut slopes be protected from erosion. The slope protection measures may include covering cut slopes with plastic sheeting and diverting surface runoff away from the top of cut slopes. We do not recommend
vertical slopes for cuts deeper than four feet, if worker access is necessary. We recommend that cut slope heights and inclinations conform to appropriate OSHA/WISHA regulations.

Permanent cut and fill slopes should be no steeper than $2 \mathrm{H}: 1 \mathrm{~V}$. However, flatter inclinations may be required in areas where loose soils are encountered. If permanent slopes steeper than $2 \mathrm{H}: 1 \mathrm{~V}$ are created, we would anticipate such slope(s) to require on-going maintenance. Permanent slopes should be planted and the vegetative cover should be maintained until it is established. We should review plans and visit the site to evaluate excavations for this project.

Slope Improvements

Geogrid-Reinforced Block Wall Design and Construction: The total height of each of the recommended tiers is expected to be up to approximately 10 feet, including a minimum recommended embedment of 1.5 feet below the finished ground surface. We have provided wall designs for a tiered wall system with an individual tier height up to a 10 -foot high retaining wall with Keystone block facing or utilizing the existing blocks on site. We recommend that walls be constructed utilizing geogrid reinforced backfill. The wall detail and design parameters along with construction notes are shown on Figure 10. Keystone Block wall calculations are provided in Appendix A. We have assumed that the retained fill zones will consist of granular material compacted to structural fill specifications. We understand that the fill will be placed level behind the walls and extending back into the slope. As indicated on the detail, the drainage system should be installed along the base of the blocks.

The block facing should consist of Keystone Compaq blocks or the existing blocks on site. The block facing should be placed on a minimum of 4-inch thick crushed rock leveling pads placed over competent native soils, or structural fill material prepared under the supervision of NGA. Unsuitable undocumented fill soils will likely be encountered at the retaining wall subgrades. We recommend that the wall and reinforced-fill subgrade be extended down to expose competent native soils. The wall and reinforced fill areas should also be graded to level benches prior to wall and reinforced fill construction. Since the walls will be terraced, we recommend that the lowest block retaining wall be constructed to completion prior to beginning construction of the upper walls. All tiers should be separated by a minimum horizontal distance that equals the total height of the tier below.

A drainage blanket of 12 inches of free-draining crushed rock should be placed between the blocks and the retained fill zone. The block cavities should also be filled with the crushed rock. A rigid, perforated drainpipe embedded in a minimum of 1 -foot of pea gravel and wrapped in a filter fabric should be placed at the bottom of the drainage blanket. The drain should be sloped to drain into a permanent discharge point placed at the bottom of the slope.

Stratagrid SG500 geogrid (or equivalent) is recommended in the wall designs. The geogrid should be cut to the recommended lengths, attached to the blocks as recommended by the manufacturer, and extended back into the reinforced fill zone. The grid should be pulled tight before the fill is placed over the geogrid. Care should be taken not to damage the geogrid by operating construction equipment on the exposed grid, or by allowing large rocks to be placed directly on the grid.

All fill placed in the retained fill zone behind the retaining walls should be placed as structural fill. Structural fill, by definition, is placed in accordance with prescribed methods and standards and is monitored by an experienced geotechnical professional or soils technician. Field monitoring procedures would include the performance of a representative number of in-place density tests to document the attainment of the desired degree of relative compaction. The fill subgrade should consist of native medium dense or better native soil compacted to a non-yielding condition. The fill subgrade should consist of level benches.

Structural fill should consist of a good quality, granular soil, free of organics and other deleterious material and be well graded to a maximum size of about three inches. The material should have no more than 10 percent by weight of the portion passing the US \#200 Sieve. We should be retained to evaluate proposed fill material prior to construction.

Following subgrade preparation, placement of structural fill may proceed. All fill placements should be accomplished in uniform lifts up to eight inches thick. Each lift should be spread evenly and be thoroughly compacted prior to placement of subsequent lifts. All structural fill should be compacted to a minimum of 95 percent of the material's maximum dry density. Maximum dry density, in this report, refers to that density as determined by the ASTM D 1557 Compaction Test procedure. The moisture content of the soils to be compacted should be within about two percent of optimum so that a readily compactable condition exists. It may be necessary to over-excavate and remove wet soils in cases where drying to a compactable condition is not feasible. All compaction should be accomplished by equipment of a type and size sufficient to attain the desired degree of compaction.

Site Drainage

If ground water seepage is encountered or if excessive rainfall occurs during construction of specific aspects, we recommend that the contractor slope the bottom of the excavations and direct the water to ditches and small sump pits. The collected water can then be directed to a suitable discharge point at the bottom of the slope.

We also recommend that all residence downspouts and yard drains be investigated to understand where they are directed. All drain pipes within the steep slope area should be abandoned and removed. If any irrigation systems are located within the steep slopes they should also be abandoned and removed. We recommend that all of the existing roof, footing, yard, and driveway drains associated with the residence be tightlined to flow into an approved system. NGA should be retained to evaluate the drainage systems as they are investigated and constructed.

CLOSURE

Based on our understanding of the proposed plans, and provided that the recommendations in this report are strictly followed during construction and the walls are constructed under the supervision of NGA, the areas disturbed by construction should remain stable. The geologic hazard area will be modified, or the development has been designed so that the risk to the lot and adjacent property is eliminated or mitigated such that the site is determined to be safe meeting the requirements stated in Mercer Island City Code 19.07.060.D.2.a. Therefore, the risk of damage to the proposed development or to adjacent properties from soil instability should be minimal, and the proposed grading and development should not increase the potential for soil movement.

USE OF THIS REPORT

NGA has prepared this report for Ms. Sandra Lum and her agents, for use in the planning and design of the slope stabilization project on this site only. This letter is a specific evaluation of the observed soil settlement and related distress, and the existing concrete block retaining walls. The scope of our work does not include services related to construction safety precautions, and our recommendations are not intended to direct the contractors' methods, techniques, sequences, or procedures, except as specifically described in our report for consideration in design. There are possible variations in subsurface conditions between the explored and unexplored areas and also with time. Our report, conclusions, and interpretations should not be construed as a warranty of subsurface conditions. A contingency for unanticipated conditions should be included in the budget and schedule.

All people who own or occupy homes on hillsides should realize that landslide movements are always a possibility. The landowner should periodically inspect the slope, especially after a winter storm. If distress is evident, a geotechnical engineer should be contacted for advice on remedial/preventative measures. The probability that landsliding will occur is substantially reduced by the proper maintenance of drainage control measures at the site (the runoff from the roofs should be led to an approved discharge point). Therefore, the homeowner should take responsibility for performing such maintenance. Consequently, we recommend that a copy of our report be provided to any future homeowners of the property if the home is sold.

We recommend that NGA be retained to review final plans prior to construction. We also recommend that NGA be retained to provide monitoring and consultation services during construction to confirm that the conditions encountered are consistent with those indicated by the explorations, to provide recommendations for design changes should the conditions revealed during the work differ from those anticipated, and to evaluate whether or not earthwork and foundation installation activities comply with contract plans and specifications. We should be contacted a minimum of one week prior to construction activities and could attend pre-construction meetings if requested.

Within the limitations of scope, schedule, and budget, our services have been performed in accordance with generally accepted geotechnical engineering practices in effect in this area at the time this report was prepared. No other warranty, expressed or implied, is made. Our observations, findings, and opinions are a means to identify and reduce the inherent risks to the owner.

It has been a pleasure to provide service to you on this project. If you have any questions or require further information, please call.

Sincerely,
NELSON GEOTECHNICAL ASSOCIATES, INC.

Carston T. Curd, GIT
Staff Geologist

Lee S. Bellah, LG

Project Geologist

Khaled M. Shawish, PE
Principal

CTC:LSB:KMS:dy

Ten Figures and Appendix A Attached

Exploration

Reference: Cross Section is based on field measurements using a hand-held clinometer and 100-ft tape measure.
N:12018 NGA Project Folders110274-18 Lo Mercer Island REtaining WallsIDraftingICS.dwg

UNIFIED SOIL CLASSIFICATION SYSTEM

MAJOR DIVISIONS			GROUP SYMBOL	GROUP NAME					
COARSE -	GRAVEL	CLEAN GRAVEL	GW	WELL-GRADED, FINE TO COARSE GRAVEL					
			GP	POORLY-GRADED GRAVEL					
GRAINED SOILS	MORE THAN 50 \% OF COARSE FRACTION RETAINED ON NO. 4 SIEVE	GRAVEL	GM	SILTY GRAVEL					
		WITH FINES	GC	CLAYEY GRAVEL					
MORE THAN 50 \% RETAINED ON NO. 200 SIEVE	SAND	CLEAN SAND	SW	WELL-GRADED SAND, FINE TO COARSE SAND					
	MORE THAN 50 \% OF COARSE FRACTION PASSES NO. 4 SIEVE		SP	POORLY GRADED SAND					
		SAND WITH FINES	SM	SILTY SAND					
			SC	CLAYEY SAND					
FINE -	SILT AND CLAY	INORGANIC	ML	SILT					
GRAINED	LIQUID LIMIT LESS THAN 50 \%		CL	CLAY					
SOILS		ORGANIC	OL	ORGANIC SILT, ORGANIC CLAY					
	SILT AND CLAY	INORGANIC	MH	SILT OF HIGH PLASTICITY, ELASTIC SILT					
PASSES	LIQUID LIMIT 50 \% OR MORE		CH	CLAY OF HIGH PLASTICITY, FAT CLAY					
		ORGANIC	OH	ORGANIC CLAY, ORGANIC SILT					
HIGHLY ORGANIC SOILS			PT	PEAT					
exa acco 2) Soil is ba 3) Des con inter test	sification is based on visual on of soil in general ce with ASTM D 2488-93. sification using laboratory tests on ASTM D 2488-93. ns of soil density or cy are based on tion of blowcount data, pearance of soils, and/or			Moist - Damp, but no visible water. Wet - Visible free water or saturated, usually soil is obtained from below water table					
Project Number 1027418	Lum Residence Retaining Walls il Classification Chart	NELSON GeOtechnical Associates, inc. Geotechnical Engineers \& Geologists Woodinville Office 5526 Industry Lane, \#2 Woodinville, WA 98072East Wenatchee, WA 98802			1	Date	Revision Original	By	CK

BORING LOG

B-3

Approximate Ground Surface Elevation: 48 ft .

DEPTH (FEET)	USC	SOIL DESCRIPTION
HAND AUGER ONE		BROWN TO GRAY-BROWN, SILTY FINE TO MEDIUM SAND WITH TRACE GRAVEL AND ROOTS (LOOSE, MOIST) (FILL)
$0.0-2.8$	GRAY, SILTY FINE TO COARSE SAND (DENSE, DRY TO MOIST)	
$2.8-4.0$	SM	SAMPLES WERE NOT COLLECTED
	GROUNDWATER SEEPAGE WAS NOT ENCOUNTERED HAND AUGER CAVING WAS NOT ENCOUNTERED HAND AUGER WAS COMPLETED AT 4.0 FEET ON 3/26/18	

PECIFICATIONS FOR REINFORCED WALL

$\frac{\text { General }}{1 \text {. The contractor shall have an approved set of plans and specifications on site at all times during the construction of the wall. }}$ The wall layout is the responsibility of the contractor
observe and monitor the construction of the wall on a full-time basis. 3. Stratagrid SG500 geogrid or equivalent shall be used for this project. All geogrid and facing materials shall be approved by NGA prior to installation.
NGA prior to instaliation.
4. The contractor may use longer geogrid lengths than the design sections for ease of construction. The geogrid lengths may not be shorter unless approved by NGA
$\frac{\text { Subgrade Preparation }}{1 \text { The }}$

1. The ground shall be prepared by removing surficial organics, loose soil and undocumented fill to expose competent native soils as approved by NGA
2. Exisitng utilities shall be located and their depths varified in the field. If utility trenches or undocumented fill are encountered
within the wall or reinforced 3. A generally level bench wilh subgrade, the subgrade shall be prepared as recommended and approved by NGA. reinforced fill.
3. The excavation shall be cleaned of all excess material and protected, as necessary from construction traffic to main intergrity of the subgrade.
4. The wall and reinforced fill subgrade should expose competent native soils. Subgrades to be approved by NGA.
5. The base of the excavation should be deep enough to satisfy a minimum embedment of 1.5 feet. The wall shall also be dee enough to satisfy a minimum distance of a $1 \mathrm{H}: 1 \mathrm{~V}$ inclination between the base of the upper block wall and the base of the low block wall.
7 . The excavation walls shall be sloped back at $1.5 \mathrm{H}: 1 \mathrm{~V}$ for safety. If this is not feasible, specific recommendations for maintaining excavation stabiity shall be provided by NGA. All WISHAOSHA safety requirements shall be observed at all times during construction.
Geogrid Placement 1. The reinforcement shall be rolled out, cut to length, and laid at the proper elevation, location, and orientation. Orientation of the reinforcement is of extreme importance since geogrids vary in strength with roll direction. The contractor shall be
responsible for the correct orientation.
6. Geogrid shall be placed at the location and elevations shown on the plans. The geogrid length is measured from the face of the blocks.
7. Prior to

Fill Placement

1. Structural fill, consisting of granular import soils or granular on-site material no greater than 3 inches in size shall then be placed upon the subgrade and geogrid. If larger rock is used in the fill, additional layers of geogrid may need to be used in the reinforcement. The contractor shall prevent damage to the geogrid by placing the first lift of structural fill with at least a 1 -foot thickness. NGA shall approve material placed in the reinforced zone, before placement.
2. Structural fill shall have parameters equal to or better than those stated for the reinforced wall fill below with less then 20 percent passing the number 200 sieve. NGA may allow a higher silt content based on review of the wall design and proposed 3. Soil density tests shall be performed as designated by NGA
3. Fill soils in the wall area shall be compacted to at least 95 percent of the Maximum Dry Density (MDD) as determined by
ASTM D . 1557 .
4. The soil shall be placed in relatively uniform horizontal lifts not exceeding 10 or 12 inches in thickness.
shall not exceed the manufacturer's recommended depth for the compactive device used on the project.

Drainage

1. A specific drainage system is shown on the plans. Alternative drains can be used based on conditions found in the field and the material used within the reinforced zone. Changes to the drainage system should be approved by NGA prior to placemen 2. A drainage blanket 12 inches in width shall be installed directly behind the block facing and shall consist of 2 -inch clean 2. A drainage blanket All of drainage materials shall have a fines content no greater than 5 percent passing the number 2000 sieve,
crushed rock. All
A 4-inch rigid A 4-inch rigid perforated pipe embedded in a minimum of one foot of pea gravel or washed rock and wrapped with fiter fabric 3. Surface water shall not be allowed to pond in or near the reinforced fill zone during or after construction. 4. Suitable clean-outs shall be installed every 50 feet for future maintenance.
2. Surface water shall not be allowed to reach the drainage layer.

Design Parameters
Design Parameters Retained Backill: 30 degrees, 0 PSF, 120 PCF

Seismic
$\frac{\text { Selismic }}{0.2 \mathrm{~g} \text { peak ground acceleration }}$
External Stability of Wall
Minimum Factor of Safety against Base Sliding: 1.5
Minimum Factor of Safy
Minimum Factor of Safety against Bearring Capacity: 2.0

$\frac{\text { Internal Stability of Wall }}{\text { Minimum Factor of Safet }}$

inimum Facto statety on Geogrid Strength: 1.5
Soil-Geogrid Interaction Coefficient: 1.0
Percent Coverage of Geogrid: 100 Percent
$\frac{\text { Inspection }}{\text { Wall }}$
Inspection
Wall construction shall be completed under the
direction of NGA.

*Note: Minimum wall embedment shall be 1.5 feet or greater to maintain the $1 \mathrm{H}: 1 \mathrm{~V}$ seperation between the bottom of the upper block wall and back of the lower block walls, as shown above

$\begin{array}{\|l\|l} \hline \begin{array}{l} \text { Weill } \\ \text { Height } \\ \text { (feet) } \end{array} \end{array}$	$\left\lvert\, \begin{gathered} \text { Number of } \\ \text { Geogrid } \\ \text { Layers } \end{gathered}\right.$	Geogrid Length $\underset{\text { (feet) }}{ }$	Geogrid Height Above Leveling Pad/ Geogrid Type (feet)				
4	2	5.0	${ }^{0.67}$ SG 500^{+}	${ }^{2.67}$ SG 500	,		
6	3	6.0	0.67 SG 500	2.67 SG 500	$4.67 \text { SG } 500$		
8	4	7.0	$0^{0.67}$ SG 500	${ }^{2.67}{ }_{\text {SG } 500}$	$4.67 \text { SG } 500$	${ }^{6.67}$ SG 500	
10	5	9.0	${ }^{0.67}$ SG 500	${ }^{2.67}{ }_{\text {SG } 500}$	${ }^{4.67}$ SG 500	6.67 SG 500	$\underbrace{8.67}_{\text {SG } 500}$

*Stratagrid SG 500 (or equivalent)

APPENDIX A

Keystone Block Retaining Wall Calculations

RETAINING WALL DESIGN

KeyWall_2012 Version 3.7.2 Build 10
Project: Lum Residence Retaining Walls
Project No: 1027418
Case: Case 1
Design Method: Rankine-w/Batter (modified soil interface)

Design Parameters

Soil Parameters:
Reinforced Fill
Retained Zone
Foundation Soil

$\underline{\phi \text { deg }}$	$\underline{\mathbf{c} \mathbf{p s f}}$		$\boldsymbol{\gamma} \mathbf{\text { pcf }}$
30	0		120
30	0	120	
30	0	120	

Reinforced Fill Type:
Unit Fill:
Sand, Silt or Clay
Crushed Stone, 1 inch minus

Seismic Design A=0.20 g, Kh(Ext)=0.125, Kh(Int)=0.250, Kv=0.000
Minimum Design Factors of Safety (seismic are 75\% of static)

sliding:	$1.50 / 1.13$	pullout:	$1.50 / 1.13$	uncertainties:	$1.50 / 1.13$
overturning:	$2.00 / 1.50$	shear:	$1.50 / 1.13$	connection:	$1.50 / 1.13$
bearing:	$2.00 / 1.50$	bending:	$1.50 / 1.13$		

Design Preferences

Reinforcing Parameters: Mirafi XT Geogrids

| $5 X T$ | $\underline{\text { Tult }}$ | $\underline{\text { RFcr }}$ | $\underline{\text { RFd }}$ | $\underline{\text { RFid }}$ | $\underline{\text { LTDS }}$ | $\underline{F S}$ | $\underline{\text { Tal }}$ | $\underline{C i}$ | $\underline{C d s}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4700 | 1.58 | 1.10 | 1.05 | 2575 | 1.50 | $1717 / 3617$ | 0.80 | 0.80 | |

Analysis:

Case: Case 1

 4.0 - foot wall Unit Type: Compac / 120.00 pcf Leveling Pad: Crushed Stone Wall Ht: $\quad 4.00 \mathrm{ft}$ embedment: 1.50 ft BackSlope: $\quad 26.00$ deg. slope, Surcharge: LL: 50 psf uniform surcharge Load Width: 100.00 ft15.00 ft long

DL: 0 psf uniform surcharge
Load Width: 100.00 ft

Results:		Sliding	Overturning	Bearing	Shear	Bending
	Factors of Safety:	1.95/1.42	5.13/3.40	14.31/10.87	6.12/3.73	3.30/0.99<<

Calculated Bearing Pressure: 688 / 688 / 827 psf
Eccentricity at base: $0.07 \mathrm{ft} / 0.39 \mathrm{ft}$
Reinforcing: (ft \& lbs/ft)

Layer	$\underline{\text { Height }}$	Length	Calc. 2	$\underline{\text { Tension }}$	$\underline{\text { Reinf. Type }}$	Allow Ten Tal	Pk Conn Tcl

Reinforcing Quantities (no waste included): 5XT 1.11 sy/ft

NOTE: THESE CALCULATIONS ARE FOR PRELIMINARY DESIGN ONLY AND SHOULD NOT BE USED FOR CONSTRUCTION WITHOUT REVIEW BY A QUALIFIED ENGINEER

DETAILED CALCULATIONS

Project: Lum Residence Retaining Walls
Date: 4/24/2018
Project No: 1027418
Designer: LSB/KMS
Case: Case 1
Design Method: Rankine-w/Batter (modified soil interface)
Soil Parameters:
Reinforced Fill
Retained Zone
Foundation Soil

$\underline{\phi \text { deg }}$	$\underline{\mathbf{c} \text { psf }}$	
30	0	$\boldsymbol{\gamma} \mathbf{\text { pcf }}$
30	0	120
30	0	120
	0	120

Leveling Pad: Crushed Stone
Modular Concrete Unit: Compac
Depth: 1.00 ft
In-Place Wt: 120 pcf

Geometry

Internal Stability
External Stability
(Sloping geometry)
Height: 4.00 ft
BackSlope:
Angle: 26.0 deg
Height: 7.32 ft
Batter: 0.00deg
Surcharge:
Dead Load: 0.00 psf
Live Load: 0 psf
Base width: 5.0 ft

Earth Pressures:

Reinforcing Parameters: Mirafi XT Geogrids

	Tult	$\underline{\text { RFCr }}$	$\underline{R F d}$	$\underline{\text { RFid }}$	$\underline{L T D S}$	FS	Tal	Ci	Cds
5XT	4700	1.58	1.10	1.05	2575	1.50	1717/3617	0.80	0.80

Connection Parameters: Mirafi XT Geogrids

Frictional 1
5XT
$T c l=\operatorname{Ntan}(27.00)+1122$

Break Pt
1723
Frictional 2
$T c l=\operatorname{Ntan}(0.00)+2000$

Unit Shear Data

Shear $=N \tan (40.00)$
Inter-Unit ShearShear $=N$ tan(26.90) +769.00

Calculated Reactions

For the "modified" design method, the back of the mass assumed to be vertical for calculation of resisting forces. effective sliding length $=5.00 \mathrm{ft}$

$$
\begin{array}{ll}
\mathrm{Pa}:=0.5 \mathrm{H} \cdot(\gamma \cdot \mathrm{H} \cdot \mathrm{ka}-2 \mathrm{c} \cdot \sqrt{\mathrm{ka}}) & \mathrm{P}_{\mathrm{q}}:=\mathrm{q} \cdot \mathrm{H} \cdot \mathrm{ka} \\
\mathrm{P} \mathrm{q}_{\mathrm{h}}:=\mathrm{Pa} \cdot \cos (\delta) & \mathrm{Pc}_{\mathrm{h}}:=\mathrm{P}_{\mathrm{q}} \cdot \cos (\delta) \\
\mathrm{Pa}:=\mathrm{Pa} \cdot \sin (\delta) & \mathrm{Pq}_{\mathrm{w}}:=\mathrm{P}_{\mathrm{q}} \cdot \sin (\delta)
\end{array}
$$

Reactions are:

Area	Force	Arm-x	Arm-y	Moment
W1	480.00	$[0.500]$	2.000	240.00
W3	1920.00	$[3.000]$	2.000	5760.00
W5	468.22	$[3.667]$	4.650	1716.82
Pa_h	981.47	5.000	$[1.984]$	-1946.88
Pa_v	478.69	$[5.000]$	1.984	2393.47
Pql_h	8.42	5.000	$[2.975]$	-25.06
Pql_v	4.11	$[5.000]$	2.975	20.54
Sum $V=$	3351.02		Sum $M r=$	10130.82
Sum $H=$	989.89		Sum $M o=$	-1971.94

Calculate Sliding at Base

For Sliding, Vertical Force $=\mathrm{W} 1+\mathrm{W} 2+\mathrm{W} 3+\mathrm{W} 4+\mathrm{W} 5+\mathrm{W} 6+\mathrm{qd}=3351$
The resisting force within the rein. mass , Rf_1 $=\mathrm{N} \tan (30)$

$$
=1935
$$

The resisting force at the foundation, Rf_2
$=\mathrm{N} \tan (30.00)$
$=1935$
The driving forces, Df, are the sum of the external earth pressures:
Pa_h + Pql_h + Pqd_h
$=990$
the Factor of Safety for Sliding is Rf_2/Df
$=1.95$

Calculate Overturning:

Overturning moment: Mo = Sum Mo	$=-1972$
Resisting moment: $\mathrm{Mr}=$ Sum Mr	$=10110$
Factor of Safety of Overturning: Mr/Mo	$=5.13$

Calculate eccentricity at base: with Surcharge / without Surcharge

Sum Moments $=8138 / 8138$
Sum Vertical $=3347 / 3347$
Base Length $=5.00$
$\mathrm{e}=0.068 / 0.068$

Calculate Ultimate Bearing based on shear:

where:

$$
\begin{aligned}
& \mathrm{Nq}=18.40 \\
& \mathrm{Nc}=30.14 \\
& \mathrm{Ng}=22.40 \text { (ref. Vesic }(1973,1975) \text { eqns) } \\
& \text { Qult }=9849 \text { psf }
\end{aligned}
$$

Equivalent footing width, $\mathrm{B}^{\prime}=\mathrm{L}-2 \mathrm{e}=4.86 / 4.86$
Bearing pressure $=\operatorname{sumV} / \mathrm{B}^{\prime}=688 \mathrm{psf} / 688 \mathrm{psf}$ [bearing is greatest without liveload]
Factor of Safety for bearing $=$ Qult/bearing= 14.31

Calculate Tensions in Reinforcing:

The tensions in the reinforcing layer, and the assumed load at the connection, is the vertical area supported by each respective layer, Sv.Column [7] is '2c sqrt(ka)'.

Table of Results ppf

$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$	$[10]$	$[11]$
$\frac{\text { Layer }}{2}$	$\frac{\text { Depth zi }}{1.33}$	$\underline{\mathrm{~h} 1}$	$\underline{\mathrm{ka} / \mathrm{rho}}$	$\underline{\mathrm{Pa}}$	$\underline{(\text { Pas+Pasd })}$	$\underline{\mathrm{c}}$	$\underline{(5+6) \cos (\mathrm{d})-7}$	$\underline{\mathrm{Ti}}$	$\underline{\mathrm{Tcl}}$	$\underline{\mathrm{Tsc}}$
1	3.33	3.17	$0.519 / 42$	329	0	0	152	152	802	$\underline{\text { N/A }}$
	$3.519 / 42$	170	0	296	296	884	N/A			

Calculate sliding on the reinforcing:
The shear value is the lessor of base-shear or inter-unit shear.

$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$	$[10]$	$[11]$	$[12]$
	Layer	Depth zi	$\underline{\mathrm{N}}$	$\underline{\mathrm{Li}}$	$\underline{\mathrm{Cds}}$	$\underline{\tau}$	$\underline{\mathrm{RF}}$	$\underline{\mathrm{ka}}$	$\underline{\mathrm{Pa}}$	$\underline{\text { Pas+Pasd }}$	$\underline{\mathrm{DF}}$
1	1.33	1256	4.00	0.80	850	1430	0.519	$\underline{336}$	0	302	$\underline{4.73}$
1	3.33	2453	4.00	0.80	972	2105	0.519	870	8	789	2.67

Calculate pullout of each layer

The FoS ($\mathrm{R}^{*} / \mathrm{S}^{*}$) of pullout is calculated as the individual layer pullout (Rf) divided by the tension (Df) in that layer. The angle of the failure plane is: 30.00 degrees from vertical.

$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$
$\underline{\text { Layer }}$	Depth zi	$\underline{\text { Le }}$	$\underline{\text { SumV }}$	$\underline{\mathrm{Ci}}$	$\underline{\mathrm{POi}}$	$\underline{\mathrm{Ti}}$	$\underline{\mathrm{FS} \text { PO }}$
2	1.33	2.46	793	0.80	732	152	4.80
1	3.33	3.62	1910	0.80	1764	296	5.97

Check Shear \& Bending at each layer

Bending on the top layer is the FOS of overturning of the Units
(Most surcharge loads need to be moved back from the face.)

$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$	
$\frac{\text { Layer }}{2}$	$\frac{\text { Depth zi }}{}$	$\underline{S i}$	$\underline{D M}$	$\underline{P v}$	$\underline{R M}$	$\underline{F S b}$	$\underline{D S}$	$\underline{R S}$	$\underline{F S} S h$
Seismic	1.33	1.33	22	160	80	3.62	50	850	17.07
1	3.33	1.33	81	160	80	0.99	129	850	6.59
Seismic	3.33	2.00	75	280	247	3.30	159	972	6.12
S.00	123	280	247	2.00	261	972	3.73		

EXTERNAL STABILITY

Horizontal Acceleration $\quad=0.20 \mathrm{~g}$
Vertical Acceleration $\quad=0.00 \mathrm{~g}$
$\mathrm{Am}=(1.45-\mathrm{A}) \mathrm{A} \quad=0.250$
$\mathrm{Kh}(\mathrm{ext})=\mathrm{Am} / 2=0.125$
$\mathrm{Kh}(\mathrm{int})=\mathrm{Am} \quad=0.250$
Inertia Force of the Face:

$$
\text { W1s } \quad=\mathrm{H} \times \mathrm{Wu} \times \text { gamma }=480.00 \mathrm{ppf}
$$

Inertia Forces of the soil mass:
W2s
$=\mathrm{H} \mathrm{x}(\mathrm{H} 2 / 2$ - face depth $) *$ gamma

$$
=4.00 \times 1.32 \times 120.00
$$

$$
=634.81 \mathrm{ppf}
$$

W3s $\quad=1 / 2 \times \operatorname{sqr}(\mathrm{H} 2 / 2-1 \mathrm{ft}) \times \tan ($ beta $) \times$ gamma

$$
=51.18 \mathrm{ppf}
$$

Pif $\quad=\mathrm{W} 1 * \mathrm{kh}(\mathrm{ext})=480.00 \times 0.125=60.00$
Pir $\quad=\mathrm{W} 2 \mathrm{~s} * \mathrm{kh}(\mathrm{ext})=634.81 \times 0.125=79.35$
Pis $\quad=W 3 s * k h(e x t)=51.18 \times 0.125=6.40$
Seismic Thrust, Pae

$$
\begin{array}{ll}
\text { D_Kae } & =\text { Kae }-K a=1.022-0.514=0.508 \\
\text { Pae } & =0.5 \times \text { gamma } \times \operatorname{sqr}(H 2) \times \text { D_Kae }=0.5 \times 120.00 \times \operatorname{sqr}(4.65) \times 0.508=657.13 \\
\text { Pae_h } / 2 & =\text { Pae } \times \cos (\text { delta }) / 2=295.31 \\
\text { Pae_v } / 2 & =\text { Pae } \times \sin (\text { delta }) / 2=144.03
\end{array}
$$

Calculated Reactions

For the "modified" design method, the back of the mass assumed to be vertical for calculation of resisting forces. effective sliding length $=5.00 \mathrm{ft}$

Reactions for Seismic Calculations

Area	Force	Arm-x	Arm-y	Moment
W1	480.00	$[0.500]$	2.000	240.00
W3	1920.00	$[3.000]$	2.000	5760.00
W5	468.22	$[3.667]$	4.650	1716.82
Pa_h	981.47	5.000	$[1.984]$	-1946.88
Pa_v	478.69	$[5.000]$	1.984	2393.47
Pir	79.35	1.661	$[2.000]$	-158.70
P_if	60.00	0.500	$[2.000]$	-120.00
P_is	6.40	1.882	$[4.215]$	-26.97
Pae_h/2	295.31	2.323	$[2.787]$	-823.04
Pae_v/2	144.03	$[2.323]$	2.787	334.52
Sum $V=$	3490.95		Sum Mr $=$	10444.80
Sum $H=$	1422.53		Sum $M o=$	-3075.59

Sliding Calculations

Pa_h
$\mathrm{Pae} _\mathrm{h} / 2$
PIR
Resisting Forces, RF
Foundation fill
FS

$$
\begin{aligned}
& =981.47 \mathrm{ppf} \\
& =295.31 \mathrm{ppf} \\
& =145.75 \mathrm{ppf} \\
& =(\mathrm{W} 1+\mathrm{W} 2+\mathrm{W} 3+\mathrm{W} 4+\mathrm{W} 5+\mathrm{W} 6+\text { Pav +Pae_v }) \text { tan(phi) } \\
& =3490.95 \mathrm{x} \tan (30.00)=2015.50 \\
& =\text { RF/(Pa_h }+ \text { Pae_h/2 }+ \text { P_ir }) \\
& =1.42
\end{aligned}
$$

Overturning Calculations

$\begin{array}{ll}\text { Overturning moment: Mo = Sum Mo } & =-3076 \\ \text { Resisting Moments } \mathrm{Mr}=\text { Sum Mr } & =10445 \\ \text { Factor of Safety of Overturning }=\mathrm{Mr} / \mathrm{Mo} & =3.40\end{array}$

Calculate eccentricity at base:

Sum Moments	$=7369$
Sum Vertical	$=3491$
Base Length	$=5.00$
e	$=0.389$

Calculate Ultimate Bearing based on shear:

where:
$\mathrm{Nq}=18.40$
$\mathrm{Nc}=30.14$
$\mathrm{Ng}=22.40$ (ref. Vesic(1973, 1975) eqns)
Qult $=8987$ psf

Equivalent footing width, $\mathrm{B}^{\prime}=\mathrm{L}-2 \mathrm{e}$	$=4.22$
Bearing pressure $=$ sumV/B'	$=827 \mathrm{psf}$
Factor of Safety for bearing $=$ Qult/bearing	$=10.87$

INTERNAL STABILITY

$\mathrm{kh}(\mathrm{int})=(1.45-\mathrm{A}) \mathrm{A}$

$$
=(1.45-0.20) 0.20 \quad=0.250
$$

Inertia Forces
W1 $=1.00 \times 4.00 \times 120.00 \times$ kh_int) $\quad=120.00 \mathrm{ppf}$
Wedge $=$ Wedge x kh_int [for failure plane angle of 60.00deg.]

$$
=771.51 \times 0.25 \quad=192.88 \mathrm{ppf}
$$

Dead Load $=\quad=0.00 \mathrm{ppf}$

Total Additional Internal Dynamic Loading
$192.88+120.00+0.00$

$$
=312.88 \mathrm{ppf}
$$

Tension in Reinforcing					
Layer	$\underline{L e(f t)}$	Tension	Dyn Tension	Total Tension(ppf)	FoS Pullout
2	2.46	152.49	126.71	279.19	2.10
1	3.62	295.64	186.17	481.81	2.93

RETAINING WALL DESIGN

KeyWall_2012 Version 3.7.2 Build 10
Project: Lum Residence Retaining Walls
Project No: 1027418
Case: Case 1
Design Method: Rankine-w/Batter (modified soil interface)

Design Parameters

Soil Parameters:
Reinforced Fill
Retained Zone
Foundation Soil

$\underline{\phi \text { deg }}$	$\underline{\mathbf{c} \mathbf{p s f}}$		$\boldsymbol{\gamma} \mathbf{\text { pcf }}$
30	0		120
30	0	120	
30	0	120	

Reinforced Fill Type:
Unit Fill:
Sand, Silt or Clay
Crushed Stone, 1 inch minus
Seismic Design A=0.20 g, Kh(Ext)=0.125, Kh(Int)=0.250, Kv=0.000
Minimum Design Factors of Safety (seismic are 75\% of static)

sliding:	$1.50 / 1.13$	pullout:	$1.50 / 1.13$	uncertainties:	$1.50 / 1.13$
overturning:	$2.00 / 1.50$	shear:	$1.50 / 1.13$	connection:	$1.50 / 1.13$
bearing:	$2.00 / 1.50$	bending:	$1.50 / 1.13$		

Design Preferences

Reinforcing Parameters: Mirafi XT Geogrids

| | $\underline{\text { Tult }}$ | $\underline{\text { RFcr }}$ | $\underline{\text { RFd }}$ | $\underline{\text { RFid }}$ | $\underline{\text { LTDS }}$ | $\underline{F S}$ | $\underline{\text { Tal }}$ | $\underline{C i}$ | $\underline{C d s}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $5 X T$ | 4700 | 1.58 | 1.10 | 1.05 | 2575 | 1.50 | $1717 / 3617$ | 0.80 | 0.80 |

Analysis:

Case: Case 1

 6.0 - foot wall Unit Type: Compac / 120.00 pcf Leveling Pad: Crushed Stone Wall Ht: $\quad 6.00 \mathrm{ft}$ BackSlope: $\quad 26.00$ deg. slope, Surcharge: $\quad L L: 50$ psf uniform surcharge Load Width: 100.00 ftWall Batter: 0.00 deg (Hinge Ht N/A)
embedment: 1.00 ft
15.00 ft long

DL: 0 psf uniform surcharge
Load Width: 100.00 ft

Results:		Sliding	Overturning	Bearing	Shear	Bending
	Factors of Safety:	1.82/1.22	4.01/2.35	8.68/5.14	4.04/2.58	3.11/0.99<<

Calculated Bearing Pressure: 1096 / 1096 / 1521 psf
Eccentricity at base: $0.28 \mathrm{ft} / 0.92 \mathrm{ft}$
Reinforcing: (ft \& lbs/ft)

Layer	$\frac{\text { Height }}{}$	Calc. 3	$\frac{\text { Length }}{}$	Tension	$\underline{\text { Reinf. Type }}$	Allow Ten Tal	Pk Conn Tcl

Reinforcing Quantities (no waste included):
5XT 2.00 sy/ft
NOTE: THESE CALCULATIONS ARE FOR PRELIMINARY DESIGN ONLY AND SHOULD NOT BE USED FOR CONSTRUCTION WITHOUT REVIEW BY A QUALIFIED ENGINEER

DETAILED CALCULATIONS

Project: Lum Residence Retaining Walls
Date: 4/24/2018
Project No: 1027418
Designer: LSB/KMS
Case: Case 1
Design Method: Rankine-w/Batter (modified soil interface)
Soil Parameters:
Reinforced Fill
Retained Zone
Foundation Soil

$\underline{\phi \text { deg }}$	$\underline{\mathbf{c} \text { psf }}$	
30	0	$\boldsymbol{\gamma} \mathbf{\text { pcf }}$
30	0	120
30	0	120
	0	120

Leveling Pad: Crushed Stone
Modular Concrete Unit: Compac
Depth: 1.00 ft
In-Place Wt: 120 pcf

Geometry

Internal Stability
External Stability
(Sloping geometry)
Height: 6.00 ft
BackSlope:
Angle: 26.0 deg
Height: 7.32 ft
Batter: 0.00deg
Surcharge:
Dead Load: 0.00 psf
Live Load: 0 psf
Base width: 6.0 ft

Earth Pressures:

Reinforcing Parameters: Mirafi XT Geogrids

	Tult	$\underline{\text { RFCr }}$	$\underline{R F d}$	$\underline{\text { RFid }}$	$\underline{L T D S}$	FS	Tal	Ci	Cds
5XT	4700	1.58	1.10	1.05	2575	1.50	1717/3617	0.80	0.80

Connection Parameters: Mirafi XT Geogrids

Frictional 1
5XT
$T c l=\operatorname{Ntan}(27.00)+1122$

Break Pt
1723
Frictional 2
$T c l=\operatorname{Ntan}(0.00)+2000$

Unit Shear Data

Shear $=N \tan (40.00)$
Inter-Unit ShearShear $=N$ tan(26.90) +769.00

Calculated Reactions

For the "modified" design method, the back of the mass assumed to be vertical for calculation of resisting forces. effective sliding length $=6.00 \mathrm{ft}$

$$
\begin{array}{ll}
\mathrm{Pa}:=0.5 \mathrm{H} \cdot(\gamma \cdot \mathrm{H} \cdot \mathrm{ka}-2 \mathrm{c} \cdot \sqrt{\mathrm{ka}}) & \mathrm{P}_{\mathrm{q}}:=\mathrm{q} \cdot \mathrm{H} \cdot \mathrm{ka} \\
\mathrm{P} \mathrm{q}_{\mathrm{h}}:=\mathrm{Pa} \cdot \cos (\delta) & \mathrm{Pc}_{\mathrm{h}}:=\mathrm{P}_{\mathrm{q}} \cdot \cos (\delta) \\
\mathrm{Pa}:=\mathrm{Pa} \cdot \sin (\delta) & \mathrm{Pq}_{\mathrm{w}}:=\mathrm{P}_{\mathrm{q}} \cdot \sin (\delta)
\end{array}
$$

Reactions are:

Area	Force	Arm-x	Arm-y	Moment
W1	720.00	$[0.500]$	3.000	360.00
W3	3600.00	$[3.500]$	3.000	12600.00
W5	731.60	$[4.333]$	6.813	3170.26
Pa_h	1865.97	6.000	$[2.813]$	-5248.75
Pa_v	910.09	$[6.000]$	2.813	5460.55
Pql_h	30.58	6.000	$[4.219]$	-129.03
Pql_v	14.91	$[6.000]$	4.219	89.49
Sum $V=$	5976.61		Sum $M r=$	21680.30
Sum $H=$	1896.55		Sum $M o=$	-5377.78

Calculate Sliding at Base

For Sliding, Vertical Force $=\mathrm{W} 1+\mathrm{W} 2+\mathrm{W} 3+\mathrm{W} 4+\mathrm{W} 5+\mathrm{W} 6+\mathrm{qd} \quad=5977$
The resisting force within the rein. mass , Rf_1 $=\mathrm{N} \tan (30)$
$=3451$
The resisting force at the foundation, Rf_2
$=\mathrm{N} \tan (30.00)$
$=3451$
The driving forces, Df, are the sum of the external earth pressures:
Pa_h + Pql_h + Pqd_h
$=1897$
the Factor of Safety for Sliding is Rf_2/Df

Calculate Overturning:

Overturning moment: Mo = Sum Mo	$=-5378$
Resisting moment: $\mathrm{Mr}=$ Sum Mr	$=21591$
Factor of Safety of Overturning: Mr/Mo	$=4.01$

Calculate eccentricity at base: with Surcharge / without Surcharge

Sum Moments $=16213 / 16213$
Sum Vertical = 5962/5962
Base Length $=6.00$
$\mathrm{e}=0.280 / 0.280$

Calculate Ultimate Bearing based on shear:

where:

$$
\begin{aligned}
& \mathrm{Nq}=18.40 \\
& \mathrm{Nc}=30.14 \\
& \mathrm{Ng}=22.40 \text { (ref. Vesic }(1973,1975) \text { eqns) } \\
& \text { Qult }=9519 \text { psf }
\end{aligned}
$$

Equivalent footing width, $\mathrm{B}^{\prime}=\mathrm{L}-2 \mathrm{e}=5.44 / 5.44$
Bearing pressure $=$ sumV/B' $=1096 \mathrm{psf} / 1096 \mathrm{psf}$ [bearing is greatest without liveload]
Factor of Safety for bearing $=$ Qult/bearing $=8.68$

Calculate Tensions in Reinforcing:

The tensions in the reinforcing layer, and the assumed load at the connection, is the vertical area supported by each respective layer, Sv.Column [7] is '2c sqrt(ka)'.

Table of Results ppf

$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$	$[10]$	$[11]$
$\frac{\text { Layer }}{3}$	$\underline{\text { Depth zi }}$	$\underline{\mathrm{h} 1}$	$\underline{\mathrm{ka} / \mathrm{rho}}$	$\underline{\text { Pa }}$	$\underline{(\text { Pas+Pasd })}$	$\underline{\mathrm{c}}$	$\underline{(5+6) \cos (\mathrm{d})-7}$	$\underline{\mathrm{Ti}}$	$\underline{\mathrm{Tcl}}$	$\underline{\mathrm{Tsc}}$
2	1.33	1.17	$0.519 / 42$	170	0	0	152	152	802	N/A
1	3.33	3.33	$0.519 / 42$	415	0	0	373	373	884	N/A
	5.33	5.17	$0.519 / 42$	537	0	0	482	482	965	N/A

Calculate sliding on the reinforcing:

The shear value is the lessor of base-shear or inter-unit shear.

$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$	$[10]$	$[11]$	$[12]$
$\frac{\text { Layer }}{3}$	$\frac{\text { Depth zi }}{1.33}$	$\underline{\mathrm{~N}}$	$\underline{\mathrm{Li}}$	$\underline{\mathrm{Cds}}$	$\underline{\tau}$	$\underline{\mathrm{RF}}$	$\underline{\mathrm{ka}}$	$\underline{\mathrm{Pa}}$	$\underline{\text { Pas }+ \text { Pasd }}$	$\underline{\mathrm{DF}}$	$\underline{\mathrm{FS}}$
2	3.33	3184	5.00	0.00	0.80	850	1647	0.519	$\underline{443}$	0	398
1	5.33	4725	5.00	0.80	1094	3276	0.490	1776	35	1627	2.01

Calculate pullout of each layer

The FoS ($\mathrm{R}^{*} / \mathrm{S}^{*}$) of pullout is calculated as the individual layer pullout (Rf) divided by the tension (Df) in that layer. The angle of the failure plane is: 30.00 degrees from vertical.

[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
Layer	Depth zi	Le	SumV	Ci	POi	Ti	FS_PO
3	1.33	2.31	888	0.80	820	152	5.38
2	3.33	3.46	2046	0.80	1890	373	5.06
1	5.33	4.62	3681	0.80	3400	482	7.05

Bending on the top layer is the FOS of overturning of the Units
(Most surcharge loads need to be moved back from the face.)

$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$	
$\frac{\text { Layer }}{3}$	$\frac{\text { Depth zi }}{1.33}$	$\underline{S i}$	$\underline{D M}$	$\underline{P V}$	$\frac{R M}{1.33}$	22	160	$\frac{F S b}{80}$	$\frac{D S}{50}$
Seismic	1.33	1.33	81	160	80	$\underline{R S}$	$\frac{F S, S h}{17.07}$		
2	3.33	2.00	75	280	247	3.30	129	850	6.59
Seismic	3.33	2.00	120	280	247	2.05	254	972	6.12
1	5.33	2.00	131	520	407	3.11	271	1094	4.04
Seismic	5.33	2.00	204	520	407	1.99	423	1094	2.58

EXTERNAL STABILITY

Horizontal Acceleration $\quad=0.20 \mathrm{~g}$
Vertical Acceleration $\quad=0.00 \mathrm{~g}$
$\mathrm{Am}=(1.45-\mathrm{A}) \mathrm{A} \quad=0.250$
$\mathrm{Kh}(\mathrm{ext})=\mathrm{Am} / 2=0.125$
$\mathrm{Kh}(\mathrm{int})=\mathrm{Am} \quad=0.250$
Inertia Force of the Face:
$\mathrm{W} 1 \mathrm{~s} \quad=\mathrm{H} \times \mathrm{Wu} \times$ gamma $=720.00 \mathrm{ppf}$
Inertia Forces of the soil mass:
W2s
$=\mathrm{H} \mathrm{x}(\mathrm{H} 2 / 2$ - face depth $) *$ gamma
$=6.00 \times 2.65 \times 120.00$
$=1904.43 \mathrm{ppf}$
W3s $\quad=1 / 2 \times \operatorname{sqr}(H 2 / 2-1 \mathrm{ft}) \mathrm{x} \tan ($ beta $) \times$ gamma

$$
=204.74 \mathrm{ppf}
$$

Pif $\quad=\mathrm{W} 1 * \mathrm{kh}(\mathrm{ext})=720.00 \times 0.125=90.00$
Pir $\quad=\mathrm{W} 2 \mathrm{~s} * \mathrm{kh}(\mathrm{ext})=1904.43 \times 0.125=238.05$
Pis $\quad=\mathrm{W} 3 \mathrm{~s} * \mathrm{kh}(\mathrm{ext})=204.74 \times 0.125=25.59$
Seismic Thrust, Pae
D_Kae $\quad=$ Kae $-\mathrm{Ka}=1.022-0.486=0.536$
Pae $\quad=0.5 \times$ gamma $\times \operatorname{sqr}(H 2) \times$ D_Kae $=0.5 \times 120.00 \times \operatorname{sqr}(7.29) \times 0.536=1707.94$
Pae_h/2 $=$ Pae $x \cos ($ delta $) / 2=767.54$
Pae_v/2 $=$ Pae $x \sin ($ delta $) / 2=374.36$

Calculated Reactions

For the "modified" design method, the back of the mass assumed to be vertical for calculation of resisting forces. effective sliding length $=6.00 \mathrm{ft}$

Reactions for Seismic Calculations

Area	Force	Arm-x	Arm-y	Moment
W1	720.00	$[0.500]$	3.000	360.00
W3	3600.00	$[3.500]$	3.000	12600.00
W5	731.60	$[4.333]$	6.813	3170.26
Pa_h	1865.97	6.000	$[2.813]$	-5248.75
Pa_v	910.09	$[6.000]$	2.813	5460.55
Pir	238.05	2.323	$[3.000]$	-714.16
P_if	90.00	0.500	$[3.000]$	-270.00
P_is	25.59	2.763	$[6.430]$	-164.56
Pae_h/2	767.54	3.645	$[4.374]$	-3357.26
Pae_v/2	374.36	$[3.645]$	4.374	1364.54
Sum $V=$	6336.05		Sum Mr $=$	22955.35
Sum $H=$	2987.15		Sum $M o=$	-9754.73

Sliding Calculations

Pa_h
$\mathrm{Pae} _\mathrm{h} / 2$
PIR
Resisting Forces, RF
Foundation fill
FS

$$
\begin{aligned}
& =1865.97 \mathrm{ppf} \\
& =767.54 \mathrm{ppf} \\
& =353.65 \mathrm{ppf} \\
& =(\mathrm{W} 1+\mathrm{W} 2+\mathrm{W} 3+\mathrm{W} 4+\mathrm{W} 5+\mathrm{W} 6+\text { Pav }+ \text { Pae_v }) \tan (\mathrm{phi}) \\
& =6336.05 \mathrm{x} \tan (30.00)=3658.12 \\
& =\text { RF/(Pa_h }+ \text { Pae_h/2 }+ \text { P_ir }) \\
& =1.22
\end{aligned}
$$

Overturning Calculations

$\begin{array}{ll}\text { Overturning moment: Mo = Sum Mo } & =-9755 \\ \text { Resisting Moments } \mathrm{Mr}=\text { Sum Mr } & =22955 \\ \text { Factor of Safety of Overturning }=\mathrm{Mr} / \mathrm{Mo} & =2.35\end{array}$

Calculate eccentricity at base:

Sum Moments	$=13201$
Sum Vertical	$=6336$
Base Length	$=6.00$
e	$=0.917$

Calculate Ultimate Bearing based on shear:

where:
$\mathrm{Nq}=18.40$
$\mathrm{Nc}=30.14$
$\mathrm{Ng}=22.40$ (ref. Vesic(1973, 1975) eqns)
Qult $=7809$ psf

Equivalent footing width, $\mathrm{B}^{\prime}=\mathrm{L}-2 \mathrm{e}$	$=4.17$
Bearing pressure $=$ sumV/B'	$=1521 \mathrm{psf}$
Factor of Safety for bearing $=$ Qult/bearing	$=5.14$

INTERNAL STABILITY

$\mathrm{kh}(\mathrm{int})=(1.45-\mathrm{A}) \mathrm{A}$

$$
=(1.45-0.20) 0.20 \quad=0.250
$$

Inertia Forces
W1 $=1.00 \times 6.00 \times 120.00 \times$ kh_int) $\quad=180.00 \mathrm{ppf}$
Wedge $=$ Wedge x kh_int [for failure plane angle of 60.00deg.]

$$
=1735.89 \times 0.25 \quad=433.97 \mathrm{ppf}
$$

Dead Load $=\quad=0.00 \mathrm{ppf}$
Total Additional Internal Dynamic Loading
$433.97+180.00+0.00$

$$
=613.97 \mathrm{ppf}
$$

RETAINING WALL DESIGN

KeyWall_2012 Version 3.7.2 Build 10

Project: Lum Residence Retaining Walls
Project No: 1027418
Case: Case 1
Design Method: Rankine-w/Batter (modified soil interface)

Design Parameters

Soil Parameters:
Reinforced Fill
Retained Zone
Foundation Soil
Reinforced Fill Type:
Unit Fill:

$\underline{\phi \text { deg }}$	$\underline{\mathbf{c} \mathbf{p s f}}$	
30	0	120
30	0	120
30	0	120

Seismic Design A=0.20 g, Kh(Ext)=0.125 , Kh(Int)=0.250, Kv=0.000
Minimum Design Factors of Safety (seismic are 75\% of static)

sliding:	$1.50 / 1.13$	pullout:	$1.50 / 1.13$	uncertainties:	$1.50 / 1.13$
overturning:	$2.00 / 1.50$	shear:	$1.50 / 1.13$	connection:	$1.50 / 1.13$
bearing:	$2.00 / 1.50$	bending:	$1.50 / 1.13$		

Design Preferences

Reinforcing Parameters: Mirafi XT Geogrids

| | $\underline{\text { Tult }}$ | $\underline{\text { RFcr }}$ | $\underline{\text { RFd }}$ | $\underline{\text { RFid }}$ | $\underline{\text { LTDS }}$ | $\underline{F S}$ | $\underline{\text { Tal }}$ | $\underline{C i}$ | $\underline{C d s}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $5 X T$ | 4700 | 1.58 | 1.10 | 1.05 | 2575 | 1.50 | $1717 / 3617$ | 0.80 | 0.80 |

Analysis:

Case: Case 1

 8.0 - foot wall Unit Type: Compac / 120.00 pcf Leveling Pad: Crushed Stone Wall Ht: $\quad 8.00 \mathrm{ft}$ embedment: 1.00 ft BackSlope: $\quad 26.00$ deg. slope, Surcharge: $\quad L L: 50$ psf uniform surcharge Load Width: 100.00 ft

Sand, Silt or Clay Crushed Stone, 1 inch minus

DETAILED CALCULATIONS

Project: Lum Residence Retaining Walls
Date: 4/24/2018
Project No: 1027418
Designer: LSB/KMS
Case: Case 1
Design Method: Rankine-w/Batter (modified soil interface)

Soil Parameters:
Reinforced Fill
Retained Zone
Foundation Soil

$\underline{\phi \text { deg }}$	$\underline{\mathbf{c} \mathbf{p s f}}$	
30	0	$\boldsymbol{\gamma} \mathbf{~ \mathbf { ~ c f f }}$
30	0	120
30	0	120
		120

Leveling Pad: Crushed Stone
Modular Concrete Unit: Compac
Depth: 1.00 ft
In-Place Wt: 120 pcf

Geometry

Internal Stability
External Stability
(Broken geometry)
Height: 10.93 ft
Height: 8.00 ft
BackSlope:
Angle: 26.0 deg
Height: 7.32 ft
Batter: 0.00deg
Surcharge:
Dead Load: 0.00 psf
Angle: 26.0 deg
Height: 4.39 ft
Batter: 0.00deg
Dead Load: 0.00 psf
Live Load:50.00 psf
Base width: 7.0 ft

Earth Pressures:

Reinforcing Parameters: Mirafi XT Geogrids

	Tult	$\underline{\text { RFCr }}$	$\underline{R F d}$	$\underline{\text { RFid }}$	$\underline{L T D S}$	FS	Tal	Ci	Cds
5XT	4700	1.58	1.10	1.05	2575	1.50	1717/3617	0.80	0.80

Connection Parameters: Mirafi XT Geogrids

Frictional 1
5XT
$T c l=\operatorname{Ntan}(27.00)+1122$

Break Pt
1723
Frictional 2
$T c l=\operatorname{Ntan}(0.00)+2000$

Unit Shear Data

Shear $=N \tan (40.00)$
Inter-Unit ShearShear $=N$ tan(26.90) +769.00

Calculated Reactions

For the "modified" design method, the back of the mass assumed to be vertical for calculation of resisting forces. effective sliding length $=7.00 \mathrm{ft}$

$$
\begin{array}{ll}
\mathrm{Pa}:=0.5 \mathrm{H} \cdot(\gamma \cdot \mathrm{H} \cdot \mathrm{ka}-2 \mathrm{c} \cdot \sqrt{\mathrm{ka}}) & \mathrm{P}_{\mathrm{q}}:=\mathrm{q} \cdot \mathrm{H} \cdot \mathrm{ka} \\
\mathrm{P} \mathrm{q}_{\mathrm{h}}:=\mathrm{Pa} \cdot \cos (\delta) & \mathrm{Pc}_{\mathrm{h}}:=\mathrm{P}_{\mathrm{q}} \cdot \cos (\delta) \\
\mathrm{Pa}:=\mathrm{Pa} \cdot \sin (\delta) & \mathrm{Pq}_{\mathrm{w}}:=\mathrm{P}_{\mathrm{q}} \cdot \sin (\delta)
\end{array}
$$

Reactions are:

Area	Force	Arm-x	Arm-y	Moment
W1	960.00	$[0.500]$	4.000	480.00
W3	5760.00	$[4.000]$	4.000	23040.00
W5	1053.50	$[5.000]$	8.975	5267.51
Pa_h	2997.49	7.000	$[3.642]$	-10917.25
Pa_v	1204.22	$[7.000]$	3.642	8429.53
Pql_h	68.52	7.000	$[5.463]$	-374.31
Pql_v	27.53	$[7.000]$	5.463	192.68
Sum $V=$	9005.25		Sum $M r=$	37409.71
Sum $H=$	3066.00		Sum $M o=$	-11291.56

Calculate Sliding at Base

For Sliding, Vertical Force $=$ W1+W2+W3+W4+W5+W6+qd The resisting force within the rein. mass , Rf_1

The resisting force at the foundation, Rf_2
= 9005
$=\mathrm{N} \tan (30)$
= 5199
$=\mathrm{N} \tan (30.00)$
= 5199
The driving forces, Df, are the sum of the external earth pressures:
Pa_h + Pql_h + Pqd_h
$=3066$
the Factor of Safety for Sliding is Rf_2/Df
$=1.70$

Calculate Overturning:

Overturning moment: Mo = Sum Mo
= - 11292
Resisting moment: $\mathrm{Mr}=\mathrm{Sum} \mathrm{Mr}$
Factor of Safety of Overturning: Mr/Mo
$=37217$
$=3.30$

Calculate eccentricity at base: with Surcharge / without Surcharge

Sum Moments = 25925 / 25925
Sum Vertical $=8978 / 8978$
Base Length $=7.00$
e = $0.612 / 0.612$

Calculate Ultimate Bearing based on shear:

where:

$$
\begin{aligned}
& \mathrm{Nq}=18.40 \\
& \mathrm{Nc}=30.14 \\
& \mathrm{Ng}=22.40(\text { ref. } \operatorname{Vesic}(1973,1975) \text { eqns }) \\
& \text { Qult }=9971 \mathrm{psf}
\end{aligned}
$$

Equivalent footing width, $\mathrm{B}^{\prime}=\mathrm{L}-2 \mathrm{e}=5.78 / 5.78$
Bearing pressure $=$ sumV/B' $=1554 \mathrm{psf} / 1554 \mathrm{psf}$ [bearing is greatest without liveload]
Factor of Safety for bearing = Qult/bearing= 6.41

Calculate Tensions in Reinforcing:

The tensions in the reinforcing layer, and the assumed load at the connection, is the vertical area supported by each respective layer, Sv.Column [7] is '2c sqrt(ka)'.

Table of Results ppf

$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$	$[10]$	$[11]$
$\frac{\text { Layer }}{4}$	$\underline{\text { Depth zi }}$	$\underline{\mathrm{h} 1}$	$\underline{\mathrm{ka} / \mathrm{rho}}$	$\underline{\mathrm{Pa}}$	$\underline{(P a s+P a s d)}$	$\underline{\mathrm{c}}$	$\underline{(5+6) \cos (\mathrm{d})-7}$	$\underline{\mathrm{Ti}}$	$\underline{\mathrm{Tcl}}$	$\underline{\mathrm{Tsc}}$
3	1.33	1.17	$0.516 / 43$	169	0	0	153	153	802	$\mathrm{~N} / \mathrm{A}$
2	3.33	3.33	$0.516 / 43$	413	0	0	376	376	884	N/A
1	5.33	5.33	$0.516 / 42$	661	0	0	601	601	965	N/A
	7.33	7.17	$0.511 / 44$	732	0	0	666	666	1047	N/A

Calculate sliding on the reinforcing:

The shear value is the lessor of base-shear or inter-unit shear.

[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]
Layer	Depth zi	N	$\underline{\text { Li }}$	Cds	τ	RF	ka	Pa	Pas+Pasd	DF	FS
4	1.33	2223	6.00	0.80	850	1877	0.512	557	4	521	3.60
3	3.33	3895	6.00	0.80	972	2771	0.495	1164	19	1098	2.52
2	5.33	5633	6.00	0.80	1094	3696	0.475	1943	41	1841	2.01
1	7.33	7433	6.00	0.80	1215	4649	0.457	2886	63	2736	1.70

Calculate pullout of each layer

The FoS ($\mathrm{R}^{*} / \mathrm{S}^{*}$) of pullout is calculated as the individual layer pullout (Rf) divided by the tension (Df) in that layer. The angle of the failure plane is: 30.00 degrees from vertical.

[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
Layer	Depth zi	Le	SumV	$\underline{\mathrm{Ci}}$	POi	Ti	FS_PO
4	1.33	2.15	964	0.80	891	153	5.81
3	3.33	3.31	2163	0.80	1998	376	5.32
2	5.33	4.46	3839	0.80	3546	601	5.90
1	7.33	5.62	5990	0.80	5534	666	8.31

Bending on the top layer is the FOS of overturning of the Units
(Most surcharge loads need to be moved back from the face.)

$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$	
$\underline{\text { Layer }}$	$\underline{\text { Depth zi }}$	$\underline{S i}$	$\underline{D M}$	$\underline{P V}$	$\underline{R M}$	$\underline{F S} b$	$\underline{D S}$	$\underline{R S}$	$\underline{F S}$ Sh
4	1.33	1.33	22	160	80	3.59	50	850	16.97
Seismic	1.33	1.33	61	160	80	1.32	104	850	8.21
3	3.33	2.00	75	280	247	3.28	160	972	6.09
Seismic	3.33	2.00	121	280	247	2.03	256	972	3.80
2	5.33	2.00	131	520	407	3.09	272	1094	4.02
Seismic	5.33	2.00	198	520	407	2.06	408	1094	2.68
1	7.33	2.00	186	760	567	3.04	381	1215	3.19
Seismic	7.33	2.00	286	760	567	1.98	587	1215	2.07

EXTERNAL STABILITY

Horizontal Acceleration $\quad=0.20 \mathrm{~g}$
Vertical Acceleration $\quad=0.00 \mathrm{~g}$
$\mathrm{Am}=(1.45-\mathrm{A}) \mathrm{A} \quad=0.250$
$\mathrm{Kh}(\mathrm{ext})=\mathrm{Am} / 2=0.125$
$\mathrm{Kh}(\mathrm{int})=\mathrm{Am} \quad=0.250$
Inertia Force of the Face:
$\mathrm{W} 1 \mathrm{~s} \quad=\mathrm{H} \times \mathrm{Wu} \times$ gamma $=960.00 \mathrm{ppf}$
Inertia Forces of the soil mass:
W2s
$=\mathrm{Hx}(\mathrm{H} 2 / 2-$ face depth $) *$ gamma
$=8.00 \times 3.97 \times 120.00$
$=3808.85 \mathrm{ppf}$
W3s $\quad=1 / 2 \times \operatorname{sqr}(H 2 / 2-1 \mathrm{ft}) \mathrm{x} \tan ($ beta $) \times$ gamma

$$
=460.66 \mathrm{ppf}
$$

Pif $\quad=\mathrm{W} 1 * \mathrm{kh}(\mathrm{ext})=960.00 \times 0.125=120.00$
Pir $\quad=\mathrm{W} 2 \mathrm{~s} * \mathrm{kh}(\mathrm{ext})=3808.85 \times 0.125=476.11$
Pis $\quad=\mathrm{W} 3 \mathrm{~s} * \mathrm{kh}(\mathrm{ext})=460.66 \times 0.125=57.58$
Seismic Thrust, Pae

D_Kae	$=$ Kae - Ka $=0.597-0.451=0.146$
Pae	$=0.5 \times$ gamma $\times \operatorname{sqr}($ H2 $) \times$ D_Kae $=0.5 \times 120.00 \times \operatorname{sqr}(9.94) \times 0.146=861.98$
Pae_h $/ 2$	$=$ Pae $\times \cos ($ delta $) / 2=399.93$
Pae_v $/ 2$	$=$ Pae $\times \sin ($ delta $) / 2=160.67$

Calculated Reactions

For the "modified" design method, the back of the mass assumed to be vertical for calculation of resisting forces. effective sliding length $=7.00 \mathrm{ft}$

Reactions for Seismic Calculations

Area	Force	Arm-x	Arm-y	Moment
W1	960.00	$[0.500]$	4.000	480.00
W3	5760.00	$[4.000]$	4.000	23040.00
W5	1053.50	$[5.000]$	8.975	5267.51
Pa_h	2997.49	7.000	$[3.642]$	-10917.25
Pa_v	1204.22	$[7.000]$	3.642	8429.53
Pir	476.11	2.984	$[4.000]$	-1904.43
P_if	120.00	0.500	$[4.000]$	-480.00
P_is	57.58	3.645	$[8.645]$	-497.80
Pae_h/2	399.93	4.968	$[5.961]$	-2383.98
Pae_v/2	160.67	$[4.968]$	5.961	798.12
Sum $V=$	9138.39		Sum $M r=$	38015.16
Sum $H=$	4051.10		Sum $M o=$	-16183.46

Sliding Calculations

Pa_h
Pae_h/2
PIR
Resisting Forces, RF
Foundation fill
FS

$$
\begin{aligned}
& =2997.49 \mathrm{ppf} \\
& =399.93 \mathrm{ppf} \\
& =653.69 \mathrm{ppf} \\
& =(\mathrm{W} 1+\mathrm{W} 2+\mathrm{W} 3+\mathrm{W} 4+\mathrm{W} 5+\mathrm{W} 6+\text { Pav }+ \text { Pae_v }) \tan (\text { phi }) \\
& =9138.39 \times \tan (30.00)=5276.05 \\
& =\text { RF/(Pa_h }+ \text { Pae_h/2 }+ \text { P_ir }) \\
& =1.30
\end{aligned}
$$

Overturning Calculations

$\begin{array}{ll}\text { Overturning moment: Mo = Sum Mo } & =-16183 \\ \text { Resisting Moments } \mathrm{Mr}=\text { Sum } \mathrm{Mr} & =38015 \\ \text { Factor of Safety of Overturning }=\mathrm{Mr} / \mathrm{Mo} & =2.35\end{array}$

Calculate eccentricity at base:

Sum Moments	$=21832$
Sum Vertical	$=9138$
Base Length	$=7.00$
e	$=1.111$

Calculate Ultimate Bearing based on shear:

where:
$\mathrm{Nq}=18.40$
$\mathrm{Nc}=30.14$
$\mathrm{Ng}=22.40$ (ref. Vesic(1973, 1975) eqns)
Qult $=8631$ psf

Equivalent footing width, $\mathrm{B}^{\prime}=\mathrm{L}-2 \mathrm{e}$	$=4.78$
Bearing pressure $=$ sumV/B'	$=1913 \mathrm{psf}$
Factor of Safety for bearing $=$ Qult/bearing	$=4.51$

INTERNAL STABILITY

kh(int) $=(1.45-\mathrm{A}) \mathrm{A}$

$$
=(1.45-0.20) 0.20 \quad=0.250
$$

Inertia Forces
$\mathrm{W} 1=1.00 \times 8.00 \times 120.00 \times$ kh_int $) \quad=240.00 \mathrm{ppf}$
Wedge $=$ Wedge x kh_int [for failure plane angle of 60.00deg.]

$$
=3086.03 \times 0.25 \quad=771.51 \mathrm{ppf}
$$

Dead Load $=\quad=0.00 \mathrm{ppf}$
Total Additional Internal Dynamic Loading
$771.51+240.00+0.00$

$$
=1011.51 \mathrm{ppf}
$$

RETAINING WALL DESIGN

KeyWall_2012 Version 3.7.2 Build 10

Project: Lum Residence Retaining Walls
Project No: 1027418
Case: Case 1
Design Method: Rankine-w/Batter (modified soil interface)

Design Parameters

Soil Parameters:
Reinforced Fill
Retained Zone
Foundation Soil
Reinforced Fill Type:
Unit Fill:

$\underline{\phi \text { deg }}$	$\underline{\mathbf{c} \mathbf{p s f}}$		$\boldsymbol{\gamma} \mathbf{\text { pcf }}$
30	0	120	
30	0	120	
30	0	120	

Sand, Silt or Clay
Crushed Stone, 1 inch minus
Seismic Design A=0.20 g, Kh(Ext)=0.125, Kh(Int)=0.250, Kv=0.000
Minimum Design Factors of Safety (seismic are 75\% of static)

sliding:	$1.50 / 1.13$	pullout:	$1.50 / 1.13$	uncertainties:	$1.50 / 1.13$
overturning:	$2.00 / 1.50$	shear:	$1.50 / 1.13$	connection:	$1.50 / 1.13$
bearing:	$2.00 / 1.50$	bending:	$1.50 / 1.13$		

Design Preferences

Reinforcing Parameters: Mirafi XT Geogrids

| | $\underline{\text { Tult }}$ | $\underline{\text { RFcr }}$ | $\underline{\text { RFd }}$ | $\underline{\text { RFid }}$ | $\underline{\text { LTDS }}$ | $\underline{F S}$ | $\underline{\text { Tal }}$ | $\underline{C i}$ | $\underline{C d s}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $5 X T$ | 4700 | 1.58 | 1.10 | 1.05 | 2575 | 1.50 | $1717 / 3617$ | 0.80 | 0.80 |

Analysis:
Case: Case 1
10.0-foot wall

Unit Type: Compac / 120.00 pcf Wall Batter: 0.00 deg (Hinge Ht N/A)
Leveling Pad: Crushed Stone
Wall Ht: $\quad 10.00 \mathrm{ft}$ embedment: 1.50 ft
BackSlope: $\quad 26.00$ deg. slope,
Surcharge: LL: 50 psf uniform surcharge
15.00 ft long

DL: 0 psf uniform surcharge
Load Width: 100.00 ft

Results:		Sliding	Overturning	Bearing	Shear	Bending
	Factors of Safety:	1.56/1.30	3.15/2.29	6.42/4.60	2.70/1.81	2.98/1.44

Calculated Bearing Pressure: 1978 / 1978 / 2411 psf
Eccentricity at base: $1.01 \mathrm{ft} / 1.61 \mathrm{ft}$
Reinforcing: (ft \& lbs/ft)

Layer	Height	Length	Calc. Tension	Reinf. Type	Allow Ten Tal	Pk Conn Tcl	Pullout FS
5	8.67	9.0	156 / 326	5XT	1717/3617 ok	802/1070 ok	9.57/3.67 ok
4	6.67	9.0	383 / 618	5XT	1717/3617 ok	884/1178 ok	7.48/3.70 ok
3	4.67	9.0	612 / 913	5XT	1717/3617 ok	965/1287 ok	7.63/4.09 ok
2	2.67	9.0	834 / 1200	5XT	1717/3617 ok	1047/1396 ok	8.30/4.61 ok
1	0.67	9.0	853 / 1283	5XT	1717/3617 ok	1128/1505 ok	>10/5.99 ok

Reinforcing Quantities (no waste included):
5XT 5.00 sy/ft

DETAILED CALCULATIONS

Project: Lum Residence Retaining Walls
Date: 4/24/2018
Project No: 1027418
Designer: LSB/KMS
Case: Case 1
Design Method: Rankine-w/Batter (modified soil interface)

Soil Parameters:
Reinforced Fill
Retained Zone
Foundation Soil

$\underline{\phi \mathbf{d e g}}$	$\underline{\mathbf{c} \mathbf{p s f}}$	$\boldsymbol{\gamma} \mathbf{~ p c f}$ 30
30	0	120
30	0	120
	0	120

Leveling Pad: Crushed Stone
Modular Concrete Unit: Compac
Depth: 1.00 ft
In-Place Wt: 120 pcf

Geometry

Internal Stability
External Stability
(Broken geometry)
Height: 13.90 ft
Height: 10.00 ft
BackSlope:
Angle: 26.0 deg
Height: 7.32 ft
Batter: 0.00deg
Surcharge:
Dead Load: 0.00 psf
Live Load: 50.00 psf
Base width: 9.0 ft

Earth Pressures:

Reinforcing Parameters: Mirafi XT Geogrids

	Tult	$\underline{\text { RFCr }}$	$\underline{R F d}$	$\underline{\text { RFid }}$	$\underline{L T D S}$	FS	Tal	Ci	Cds
5XT	4700	1.58	1.10	1.05	2575	1.50	1717/3617	0.80	0.80

Connection Parameters: Mirafi XT Geogrids

Frictional 1
5XT
$T c l=\operatorname{Ntan}(27.00)+1122$

Break Pt
1723
Frictional 2
$T c l=\operatorname{Ntan}(0.00)+2000$

Unit Shear Data

Shear $=N \tan (40.00)$
Inter-Unit ShearShear $=N$ tan(26.90) +769.00

Calculated Reactions

For the "modified" design method, the back of the mass assumed to be vertical for calculation of resisting forces. effective sliding length $=9.00 \mathrm{ft}$

$$
\begin{array}{ll}
\mathrm{Pa}:=0.5 \mathrm{H} \cdot(\gamma \cdot \mathrm{H} \cdot \mathrm{ka}-2 \mathrm{c} \cdot \sqrt{\mathrm{ka}}) & \mathrm{P}_{\mathrm{q}}:=\mathrm{q} \cdot \mathrm{H} \cdot \mathrm{ka} \\
\mathrm{P} \mathrm{q}_{\mathrm{h}}:=\mathrm{Pa} \cdot \cos (\delta) & \mathrm{Pc}_{\mathrm{h}}:=\mathrm{P}_{\mathrm{q}} \cdot \cos (\delta) \\
\mathrm{Pa}:=\mathrm{Pa} \cdot \sin (\delta) & \mathrm{Pq}_{\mathrm{w}}:=\mathrm{P}_{\mathrm{q}} \cdot \sin (\delta)
\end{array}
$$

Reactions are:

Area	Force	Arm-x	Arm-y	Moment
W1	1200.00	$[0.500]$	5.000	600.00
W3	9600.00	$[5.000]$	5.000	48000.00
W5	1872.89	$[6.333]$	11.301	11861.66
Pa_h	4670.45	9.000	$[4.634]$	-21642.65
Pa_V	1147.01	$[9.000]$	4.634	10323.05
Pql_h	124.19	9.000	$[6.951]$	-863.25
Pql_v	30.50	$[9.000]$	6.951	274.50
Sum $V=$	13850.40		Sum $M r=$	71059.20
Sum $H=$	4794.64		Sum $M o=$	-22505.89

Calculate Sliding at Base

For Sliding, Vertical Force $=$ W1+W2+W3+W4+W5+W6+qd $=13850$
The resisting force within the rein. mass , Rf_1 $=\mathrm{N} \tan (30)$

$$
=7997
$$

The resisting force at the foundation, Rf_2

$$
=\mathrm{N} \tan (30.00)
$$

$$
=7997
$$

The driving forces, Df, are the sum of the external earth pressures:
Pa_h + Pql_h + Pqd_h
$=4795$
the Factor of Safety for Sliding is Rf_2/Df
$=1.67$

Calculate Overturning:

Overturning moment: Mo = Sum Mo	$=-22506$
Resisting moment: $\mathrm{Mr}=$ Sum Mr	$=70785$
Factor of Safety of Overturning: Mr/Mo	$=3.15$

Calculate eccentricity at base: with Surcharge / without Surcharge

Sum Moments $=48279 / 48279$
Sum Vertical $=13820 / 13820$
Base Length $=9.00$
$\mathrm{e}=1.007 / 1.007$

Calculate Ultimate Bearing based on shear:

where:

$$
\begin{aligned}
& \mathrm{Nq}=18.40 \\
& \mathrm{Nc}=30.14 \\
& \mathrm{Ng}=22.40 \text { (ref. Vesic(1973, 1975) eqns) } \\
& \mathrm{Qult}=12704 \mathrm{psf}
\end{aligned}
$$

Equivalent footing width, $\mathrm{B}^{\prime}=\mathrm{L}-2 \mathrm{e}=6.99 / 6.99$
Bearing pressure $=$ sumV/B' $=1978 \mathrm{psf} / 1978$ psf [bearing is greatest without liveload]
Factor of Safety for bearing $=$ Qult/bearing $=6.42$

Calculate Tensions in Reinforcing:

The tensions in the reinforcing layer, and the assumed load at the connection, is the vertical area supported by each respective layer, Sv.Column [7] is '2c sqrt(ka)'.

Table of Results ppf

[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]
Layer	Depth zi	$\underline{\text { h1 }}$	ka/rho	Pa	(Pas+Pasd)	c	$(5+6) \cos (\mathrm{d})-7$	$\underline{\mathrm{Ti}}$	Tcl	$\underline{\text { Tsc }}$
5	1.33	1.17	0.510/43	166	0	0	156	156	802	N/A
4	3.33	3.33	0.510/43	408	0	0	383	383	884	N/A
3	5.33	5.33	0.509/44	652	0	0	612	612	965	N/A
2	7.33	7.33	0.504/46	888	0	0	834	834	1047	N/A
1	9.33	9.17	0.494/46	906	2	0	853	853	1128	N/A

Calculate sliding on the reinforcing:

The shear value is the lessor of base-shear or inter-unit shear.

[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]
Layer	Depth zi	N	$\underline{\text { Li }}$	Cds	$\underline{\tau}$	RF	ka	$\underline{\text { Pa }}$	Pas+Pasd	DF	FS
5	1.33	3359	8.00	0.80	850	2401	0.506	832	30	837	2.87
4	3.33	5432	8.00	0.80	972	3481	0.468	1471	37	1464	2.38
3	5.33	7555	8.00	0.80	1094	4583	0.449	2296	60	2289	2.00
2	7.33	9714	8.00	0.80	1215	5702	0.431	3265	94	3262	1.75
1	9.33	11910	8.00	0.80	1337	6838	0.419	4401	117	4388	1.56

Calculate pullout of each layer

The FoS ($\mathrm{R}^{*} / \mathrm{S}^{*}$) of pullout is calculated as the individual layer pullout (Rf) divided by the tension (Df) in that layer. The angle of the failure plane is: 30.00 degrees from vertical.

$[1]$							
Layer	$[2]$ Depth zi	$[3]$ 5	1.33	$\underline{\text { Le }}$	$\underline{\text { SumV }}$	$\underline{[4]}$	$\underline{\mathrm{Ci}}$

Check Shear \& Bending at each layer

Bending on the top layer is the FOS of overturning of the Units
(Most surcharge loads need to be moved back from the face.)

$[1]$	$[2]$	$[3]$	$[4]$	$[5]$	$[6]$	$[7]$	$[8]$	$[9]$	
$\frac{\text { Layer }}{5}$	$\frac{\text { Depth zi }}{}$	1.33	1.33	$\frac{S M}{23}$	$\frac{P V}{160}$	$\frac{R M}{80}$	$\frac{F S \quad b}{3.53}$	$\frac{D S}{51}$	$\underline{R S}$
Seismic	1.33	1.33	55	160	80	1.44	97	850	16.65
4	3.33	2.00	77	280	247	3.22	163	972	5.78
Seismic	3.33	2.00	129	280	247	1.92	270	972	3.60
3	5.33	2.00	134	520	407	3.04	277	1094	3.94
Seismic	5.33	2.00	204	520	407	2.00	420	1094	2.61
2	7.33	2.00	190	760	567	2.98	389	1215	3.12
Seismic	7.33	2.00	276	760	567	2.05	564	1215	2.15
1	9.33	2.00	243	1000	727	2.99	495	1337	2.70
Seismic	9.33	2.00	362	1000	727	2.01	739	1337	1.81

EXTERNAL STABILITY

Horizontal Acceleration $\quad=0.20 \mathrm{~g}$
Vertical Acceleration $\quad=0.00 \mathrm{~g}$
$\mathrm{Am}=(1.45-\mathrm{A}) \mathrm{A} \quad=0.250$
$\mathrm{Kh}(\mathrm{ext})=\mathrm{Am} / 2=0.125$
$\mathrm{Kh}(\mathrm{int})=\mathrm{Am} \quad=0.250$
Inertia Force of the Face:

$$
\text { W1s } \quad=\mathrm{H} \times \mathrm{Wu} \times \text { gamma }=1200.00 \mathrm{ppf}
$$

Inertia Forces of the soil mass:
W2s
$=\mathrm{H} \mathrm{x}(\mathrm{H} 2 / 2-$ face depth $) *$ gamma
$=10.00 \times 5.29 \times 120.00$
$=6348.08 \mathrm{ppf}$
W3s $\quad=1 / 2 \times \operatorname{sqr}(H 2 / 2-1 \mathrm{ft}) \times \tan ($ beta $) \times$ gamma

$$
=818.95 \mathrm{ppf}
$$

Pif $\quad=\mathrm{W} 1 * \mathrm{kh}(\mathrm{ext})=1200.00 \times 0.125=150.00$
Pir $\quad=\mathrm{W} 2 \mathrm{~s} * \mathrm{kh}(\mathrm{ext})=6348.08 \times 0.125=793.51$
Pis $\quad=\mathrm{W} 3 \mathrm{~s} * \mathrm{kh}(\mathrm{ext})=818.95 \times 0.125=102.37$
Seismic Thrust, Pae

D_Kae	$=$ Kae - Ka $=0.523-0.415=0.108$
Pae	$=0.5 \times$ gamma $\times \operatorname{sqr}($ H2 $) \times$ D_Kae $=0.5 \times 120.00 \times \operatorname{sqr}(12.58) \times 0.108=1028.41$
Pae_h $/ 2$	$=$ Pae $\times \cos ($ delta $) / 2=499.37$
Pae_v $/ 2$	$=$ Pae $\times \sin ($ delta $) / 2=122.64$

Calculated Reactions

For the "modified" design method, the back of the mass assumed to be vertical for calculation of resisting forces. effective sliding length $=9.00 \mathrm{ft}$

Reactions for Seismic Calculations

Area	Force	Arm-x	Arm-y	Moment
W1	1200.00	$[0.500]$	5.000	600.00
W3	9600.00	$[5.000]$	5.000	48000.00
W5	1872.89	$[6.333]$	11.301	11861.66
Pa_h	4670.45	9.000	$[4.634]$	-21642.65
Pa_v	1147.01	$[9.000]$	4.634	10323.05
Pir	793.51	3.645	$[5.000]$	-3967.55
P_if	150.00	0.500	$[5.000]$	-750.00
P_is	102.37	4.527	$[10.860]$	-1111.73
Pae_h/2	499.37	6.290	$[7.548]$	-3769.25
Pae_v/2	122.64	$[6.290]$	7.548	771.40
Sum $V=$	13942.54		Sum Mr $=$	71556.11
Sum $H=$	6215.69		Sum Mo $=$	-31241.18

Sliding Calculations

Pa_h
$\mathrm{Pae} _\mathrm{h} / 2$
PIR
Resisting Forces, RF
Foundation fill
FS

$$
\begin{aligned}
& =4670.45 \mathrm{ppf} \\
& =499.37 \mathrm{ppf} \\
& =1045.88 \mathrm{ppf} \\
& =(\mathrm{W} 1+\mathrm{W} 2+\mathrm{W} 3+\mathrm{W} 4+\mathrm{W} 5+\mathrm{W} 6+\text { Pav }+ \text { Pae_v }) \text { tan(phi }) \\
& =13942.54 \times \tan (30.00)=8049.73 \\
& =\text { RF/(Pa_h }+ \text { Pae_h/2 }+ \text { P_ir }) \\
& =1.30
\end{aligned}
$$

Overturning Calculations

$\begin{array}{ll}\text { Overturning moment: Mo = Sum Mo } & =-31241 \\ \text { Resisting Moments } \mathrm{Mr}=\text { Sum Mr } & =71556 \\ \text { Factor of Safety of Overturning }=\mathrm{Mr} / \mathrm{Mo} & =2.29\end{array}$

Calculate eccentricity at base:

Sum Moments	$=40315$
Sum Vertical	$=13943$
Base Length	$=9.00$
e	$=1.608$

Calculate Ultimate Bearing based on shear:

where:
$\mathrm{Nq}=18.40$
$\mathrm{Nc}=30.14$
$\mathrm{Ng}=22.40$ (ref. Vesic(1973, 1975) eqns)
Qult $=11085$ psf

Equivalent footing width, $\mathrm{B}^{\prime}=\mathrm{L}-2 \mathrm{e}$	$=5.78$
Bearing pressure $=$ sumV/B'	$=2411 \mathrm{psf}$
Factor of Safety for bearing $=$ Qult/bearing	$=4.60$

INTERNAL STABILITY

$\mathrm{kh}(\mathrm{int})=(1.45-\mathrm{A}) \mathrm{A}$

$$
=(1.45-0.20) 0.20 \quad=0.250
$$

Inertia Forces
$\mathrm{W} 1=1.00 \times 10.00 \times 120.00 \times$ kh_int $) \quad=300.00 \mathrm{ppf}$
Wedge $=$ Wedge x kh_int [for failure plane angle of 60.00 deg .]

$$
=4821.92 \times 0.25 \quad=1205.48 \mathrm{ppf}
$$

Dead Load $=\quad=0.00 \mathrm{ppf}$
Total Additional Internal Dynamic Loading
$1205.48+300.00+0.00$

$$
=1505.48 \mathrm{ppf}
$$

Tension in Reinforcing Layer 5	$\frac{\text { Le }(\mathbf{f t})}{}$		Tension			

